| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • Stop wasting time looking for files and revisions. Connect your Gmail, DriveDropbox, and Slack accounts and in less than 2 minutes, Dokkio will automatically organize all your file attachments. Learn more and claim your free account.

View
 

Dasar Klasifikasi

Page history last edited by PBworks 14 years, 4 months ago

Klasifikasi adalah proses untuk menemukan model atau fungsi yang menjelaskan atau membedakan konsep atau kelas data, dengan tujuan untuk dapat memperkirakan kelas dari suatu objek yang labelnya tidak diketahui. Model itu sendiri bisa berupa aturan “jika-maka”, berupa decision tree, formula matematis atau neural network.

 

Decision tree adalah salah satu metode klasifikasi yang paling populer karena mudah untuk diinterpretasi oleh manusia. Contoh dari decision tree dapat dilihat di Gambar 3. Disini setiap percabangan menyatakan kondisi yang harus dipenuhi dan tiap ujung pohon menyatakan kelas data. Contoh di Gambar 3 adalah identifikasi pembeli komputer, dari decision tree tsb. diketahui bahwa salah satu kelompok yang potensial membeli komputer adalah orang yang berusia di bawah 30 tahun dan juga pelajar.

 

Algoritma decision tree yang paling terkenal adalah C4.57, tetapi akhir-akhir ini telah dikembangkan algoritma yang mampu menangani data skala besar yang tidak dapat ditampung di main memory seperti RainForest3. Metode-metode classification yang lain adalah Bayesian, neural network, genetic algorithm, fuzzy, case-based reasoning, dan k-nearest neighbor.

 

Proses klasifikasi biasanya dibagi menjadi dua fase : learning dan test. Pada fase learning, sebagian data yang telah diketahui kelas datanya diumpankan untuk membentuk model perkiraan. Kemudian pada fase test model yang sudah terbentuk diuji dengan sebagian data lainnya untuk mengetahui akurasi dari model tsb. Bila akurasinya mencukupi model ini dapat dipakai untuk prediksi kelas data yang belum diketahui.

 

 

Permasalahan pada Dataset yang Imbalance

Cost Sensitive Learning

Comments (0)

You don't have permission to comment on this page.